skip to main content


Search for: All records

Creators/Authors contains: "Archana Yadav, Jenna Borrelli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored bacterial lineages have provided invaluable insights into the metabolic capabilities and ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil and non-soil habitats, to examine the metabolic capabilities and ecological role of members of the family UBA6911 (group18) Acidobacteria. The analyzed genomes clustered into five distinct genera, with genera Gp18_AA60 and QHZH01 recovered from soils, genus Ga0209509 from anaerobic digestors, and genera Ga0212092 and UBA6911 from freshwater habitats. All genomes analyzed suggested that members of Acidobacteria group 18 are metabolically versatile heterotrophs capable of utilizing a wide range of proteins, amino acids, and sugars as carbon sources, possess respiratory and fermentative capacities, and display few auxotrophies. Soil-dwelling genera were characterized by larger genome sizes, higher number of CRISPR loci, an expanded carbohydrate active enzyme (CAZyme) machinery enabling de-branching of specific sugars from polymers, possession of a C1 (methanol and methylamine) degradation machinery, and a sole dependence on aerobic respiration. In contrast, non-soil genomes encoded a more versatile respiratory capacity for oxygen, nitrite, sulfate, trimethylamine N-oxide (TMAO) respiration, as well as the potential for utilizing the Wood Ljungdahl (WL) pathway as an electron sink during heterotrophic growth. Our results not only expand our knowledge of the metabolism of a yet-uncultured bacterial lineage, but also provide interesting clues on how terrestrialization and niche adaptation drives metabolic specialization within the Acidobacteria. 
    more » « less